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Abstract : K𝒐̈the and Toeplitz, (1) have carried out works on sequence spaces some of which were later on developed by Allen, 

(1) and Dienes,P., (1). an account of all these can be found out in [Cooke, (1),chapter 10]. In this direction of study efforts were 

made to establish some of the results. we experienced that in sequence spaces αβ-limit implies c-limit of the same sequence in a 

sequence space. But there we did not get an authentic signal for a c-limit to be αβ-limit under αβ-convergence. In order to 

examine the problems of existence and the position of these limits Dienes,(1) introduced the notion of regular sequence spaces. 

Our sincere efforts in this paper is to study sequence spaces in detail to observe that under what circumstances  some of the 

sequence spaces fall to be regular. 
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I. INTRODUCTION 

As my abstract of this paper says that during  to examine the problems of existence and the position of these limits Dienes,(1) 

introduced the notion of regular sequence spaces. Our sincere efforts in this paper is to study sequence spaces to observe that 

under what circumstances. some of the sequence spaces fall to be regular. Therefore our this paper of this little work will be 

wholly dedicated to establish some of the results on the formation of regular sequence spaces. 

 

II. RESEARCH METHODOLOGY 

Mainly analytical, fundamental, conceptual and qualitative research methodologies are adopted in this research paper. 

Which can be explained as-  

2.1 Analytical research uses facts or information already available to analyse a critical evaluation of the research topic 

2.2 Fundamental research is chief by concerned with formation of a theory and its generalization gathering knowledge for 

knowledge sake. i.e. in general we can say that research concerning some natural phenomena or relating to pure mathematics are 

all example of fundamental research. 

2.3 Conceptual research is related to abstract ideas or theory which are not physical, It is generally used by thinkers and 

philosopher to put forth and develop new concepts or interpret existing theories in new way. Researcher in pure mathematics and 

natural sciences pursue this type of research in general. 

2.4 This research is not quantitative research because we know that quantitative research is based on the measurement of some 

characteristics in terms of numerals. i.e.this research is done by qualitative research methodology too.  

These are the why we used the above research methodologies.  

 

III. DEFINITIONS 

 In this section we give some of the essential definitions by making the use of which we shall establish some of the results in the 

next section. It will be also to serve as a ready reference. 

3.1 SEQUENCE :   Let X be a non empty set then by a sequence in X we understand a mapping    f:N →X of N into X, where N 

is the set of all natural numbers.Here the image of nϵN under f is denoted by f(n) or simply by fn and we say it the nth term of the 

sequence thus obtained.  

Also such a sequence f is generally denoted by {fn:nϵN} or {fn}  or <fn:nϵN> or <fn> or f1,f2,f3,………,fn,……... 

Also a sequence is said to be a finite or an infinite sequence according as it contains finite or infinite number of terms 

respectively. 

3.2 REAL SEQUENCE : When X=R ( the set of all real numbers) then a sequence in X is called a real sequence or a sequence of 

real numbers. Evidently in this case for such a sequence f, every fn is a real number. 

Examples of some of the sequences. 

Example  1.   an=
𝑛

𝑛+1
  that is <an> = ½,2/3,3/4,………… 

Example  2.   bn=
(−1)𝑛

2𝑛  that is <bn> = -1/2,1/4,-1/8,1/16,... 

Example  3  an= n  where nϵN then <an> = 1,2,3,…….. is a sequence of natural number. 

Example  4   <an> = 2,3,5,7,11,13,……….     is a sequence of  prime numbers. 

3.3 POSITIVE SEQUENCE :  A sequence <fn> in X is said to be positive if for some positive ϵ in X and some KϵN, fn ≥ ϵ in X 

for all n ≥K in N. 

Example : The sequence <1/n> is not positive where as the sequence <a+1
𝑛⁄ > is positive for every a>0. 

3.4 BOUNDED SEQUENCE :  A sequence {fn} is said to be bounded if its range {fn : nϵN } is a bounded set.That is when m≤fn 

≤M where m and M are the lower and upper bounds.Also it is worth much to note that {fn} or { fn : nϵN} denotes a sequence and 

is a function.But {fn : nϵN } denotes the range of the sequence and is a set. 

3.5 SUBSEQUENCE  : Let   f1,f2,f3,…….,fn,…… be a sequence. Now if k1,k2,k3,…….. is a sequence of natural numbers such that 

k1<k2<k3< ………..  then a sequence of the form of  𝑓𝑘1
, 𝑓𝑘2

, 𝑓𝑘3
, 𝑓𝑘4

,……… is called a subsequence of the sequence f1,f2,f3,….. .  
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3.6 LIMIT OF A SEQUENCE :   Let {xn} be a given sequence. Let l be a given number. Then l is said to be the limit of the 

sequence {xn} if for a given number ϵ, however small, we can find a positive integer m such that| xn –l| < ϵ  for all values n ≥ m 

and in this case we write lim
𝑛→∞

𝑥𝑛 = 𝑙 or equivalently n→∞  implies that xn→l 

Result 1: The limit of a sequence when it exists is unique.For the proof we refer to Natanson, (1) 

3.7 CONVERGENCE OF A SEQUENCE :  Let (fn) be a sequence of points of R (the set of all real numbers) then (fn) is said to 

converge to the real number l or equivelently the real number l is the limit of the sequence (fn) if given any real number ϵ > o ,  

however small , there esists a natural number m  such that  

   | fn –l |<ϵ  for all n≥m 

Here for the fact  that l is the limit of the sequence {fn} may be denoted by writing  lim
𝑛→∞

fn = l  or simply lim fn=l 

or fn→l as n→∞ or simply   fn →l. 

3.8 CONVERGENT SEQUENCE :  A sequence which converges to a number l is said to be a convergent sequence. 

Result 2:   A convergent sequence has a unique limit. 

Result 3:  Every convergent sequence is bounded. For proof of the above two result we refer to Natanson (1). 

3.9 LINEAR SPACE : A structure of linear space on a set  E  is defined by the two maps : 

 (a)     (x,y) → x + y  of  E × E  into E and is said to be vector addition . 

 (b)    (a,x) → ax of  K × E into E and is said to be scalar multiplication. 

The above two maps are assumed to satisfy the following conditions : 

(i)        x + y = y + x      for every x,y in E . 

(ii)       x + (y + z) = (x + y) + z   for every x,y,z in E .  

(iii)  There exists an element 0 in E such that x + 0 = 0 + x = x   for every x in E. 

(iv)   For every element x in E there exists an element denoted by – x in E, such that x + (- x) = (-x) + x = 0 for every x in E. 

(v)   a (x + y) = ax + ay for every a in K and all x,y in E. 

(vi)   (a + b) x = ax + bx for every a,b in K and all x in E .         

(vii)   (ab) x = a (bx) for every a,b in K and all x in E. 

             (viii)   1.x = x for every x in E. 

 Whenever all the above axioms are satisfied, we say that  E is a linear space (or a vector space) over field  K. 

 Now if  K be the set of all real numbers then E is called a real linear space and similarly if K stands for the set of       

All complex numbers then E is called a complex linear space .Here every element of E is called a vector and every element of K 

is called a scalar. The zero vector 0 is unique and called the zero element or the origin in E. 

3.10 SEQUENCE  SPACE :A  linear space whose elements are sequences is called a sequence space . 

Thus a set E of sequences is a sequence space if , it contains the origin and for every x,y in  E  and for every scalar  α , x + y and  

αx  are in  E . 

         Definitions of some special sequence spaces are being given below making the use of which some comparative results have 

been established in this paper. 

  

𝜎 :   The space of all sequences 

S0 : The zero sequence space which contains the origin only. 

𝜙(s) :  The space of all finite sequences. 

 𝜎∞  :  The space of all bounded sequences. 

ϒ(s)  : The space of all convergent sequences.  

 Z  : The space of all null sequence, in which xk→0 as k→∞. 

 01 :  The space of all sequence such that x2k+1=0 for every k. 

 Er  :  The space of all sequences such that |xk|<Ar(r>0) for  every k 

 Fr  :   The space of all sequences such that ∑ 𝑘𝑟∞
𝑘=1 |𝑥𝑘|  converges (r>0). 

 𝜎r  :  if r≥1, and if   ∑|xk|r  and ∑ |yk|r  converges then we have Minkowski’s inequality 

(∑ |𝑥𝑘 + 𝑦𝑘|∞
𝑘=1

r)1/r≤(∑ |𝑥𝑘|∞
𝑘=1

r)1/r+(∑ |𝑦𝑘|∞
𝑘=1

r)1/r 

Clearly the set of all { xk} such that ∑ |xk|r  converges form a space denoted by 𝜎r. 

Also the special case r=2 is Hilbert vector space 𝜎2. 

𝜎1 : 𝜎1 is the space of all {xk} such that ∑ |xk|  converges.  

C : The space of all stationary sequences, in which xk+1= xk for k≥k0. 

 𝛿 :The space of all sequences such that if dn is the number of non zero coordinates in the first n coordinates then    

           lim
𝑛→∞

𝑑𝑛 ∙ 𝑛 = 0 

3.11 DUAL SPACE OF A SEQUENCE SPACE α ( α*) :   Thus the dual space α* of α is the set of points which can be projected 

on every direction in α. 

Also α* is a sequence space. Also α* means the dual space of the sequence space α only. 

The dual space of α* is α**, and evidently α** ≥α . 

Also we write α=β when the space α ,β are identical ,and α>β when α contains all points of β and some other point or points. 
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3.12 PERFECT SEQUENCE SPACE :   A sequence space α is said to be prefect when α**=α . [ we refer to Cooke ,(1)] 

Thus a perfect space contains every sequence which can be projected upon every direction in its dual space. 

Clearly every prefect sequence space contains 𝜙. 

 

3.13 NORMAL SEQUENCE SPACE :  A sequence space α is said to be normal if, whenever x is in α and |yk|≤|xk| for every k, 

then y is in  α. 

 

3.14 PROJECTIVE CONVERGENT (p-cgt in α relaive to β simply p-cgt or αβ- convergent ) :   If 𝜙(s)≤β≤ α* and if for sequence 

x(n)in α , the sequence     un
´= ∑ 𝑥𝑘

(𝑛)
𝑢𝑘

∞
𝑘=1   converges for every u in β, we say that x(n) is projective convergent (p-convergent ) 

relative to β or αβ- convergent.  

When β=α* ( the dual space of α), we say that x(n) is projective convergent in α or α-convergent. 

 

3.15 CO-ORDINATE LIMIT (or c-limit ):  If the lim
𝑛→∞

𝑥𝑘
(𝑛)

 exists for every k and is 𝑥k then the point x= 𝑥k is called the co-

ordinate limit of x(n) and in this case we write c-lim x(n)=x  

3.16 PROJECTIVE LIMIT (p=limit ) :  A sequence x in α or outside α is called the projective limit ( p-limit ) of x(n) in α relative 

to β or αβ-limit x(n), when    

  (i)      ∑ 𝑢𝑘𝑥𝑘
∞
𝑘=1  is absolutely convergent for every uk in β.      

            That is x is in β*, and  

(ii)      lim
𝑛→∞

∑ 𝑥𝑘
(𝑛)

𝑢𝑘
∞
𝑘=1 = ∑ 𝑥𝑘𝑢𝑘

∞
𝑘=1  

                         for every u in β 

   When β=α* , x is called the projective limit of x(n) in α  or  α-lim x(n). 

Also we refer to Cook, (1) to show that if  αβ-limit x(n)=x then c-limit x(n)=x 

Also it follows from(i) that c-limits of αβ-convergent sequences are considered as possible αβ-limits only if they are in β*  

Also by Cooke ,(1) αβ-convergence implies coordinate convergence (c-convergence) but the converse is false. 

 

Result 4 :  A necessary and sufficient condition for the αβ-convergence of x(n) in α is that to every u in β, and to every ϵ>0, there 

corresponds a positive number N (ϵ,u), such that for every p,𝜀≥N, 

     |∑ 𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(𝜀)

)∞
𝑘=1 |≤ϵ 

Result 5:  When 𝛽 is normal, the necessary and sufficient condition thatx(n) in α should be αβ-convergent is that to every u in β, 

and to every ϵ>0, corresponds a number N(ϵ,u) such that for every p,𝜀≥N 

       ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(𝜀)

)∞
𝑘=1 |≤ϵ 

 

3.17 REGULAR SEQUENCE SPACE :If with a given definition of convergence and limit , the c-limit of every convergent 

sequence in α is the limit of that sequence, then α is regular under the given convergence. 

 

IV. RESULTS AND DISCUSSION 
 In this section we establish the following results by making use of the definitions given in section III of this paper.   

 

THEOREM (1.4,I): Every perfect sequence space is normal. 

PROOF: Let us suppose that the sequence space α is perfect. 

Also let x is in α and that     |yk|≤|xk|   for every k. 

Then ∑ |𝑢𝑘𝑥𝑘|   converges. 

For every uϵα* 

But    |yk|≤|xk|, so it is true that,  

      ∑ |𝑢𝑘𝑦𝑘| also converges 

But then as u is in α* so yϵα** 

But by hypothesis α is perfect 

Thus α**=α  

Thus yϵα** implies that y is in α    

Thus we have that for x is in α and |yk|≤|xk|for every k y is in α.  

Therefore α is normal. 

 

THEOREM(1.4,II): For every sequence space α,α* is normal.Where α* is dual sequence space of sequence space α.  

PROOF :     Let xϵα* and |yk|≤|xk| for every k. 

Thus   ∑ |𝑢𝑘𝑥𝑘|𝑘   converges  

    For    uϵα**   

But then    ∑ |𝑢𝑘𝑦𝑘| converges is true, 

For      yϵα*  

That is for xϵα* and  |yk|≤|xk| for every k  

Wefind that yϵα*    

Therefore   α* is normal. 

 

THEOREM(1.4,III): A sequence space α is regular under αz-convergent.Where z is the space of null sequences in which xk→0 as 

k→∞   

PROOF : Since z is the space of null sequences in which xk→0 as k→∞  that is |xk|<ϵ   for k is sufficiently large. 

Now let xϵz and |yk|≤|xk| for every k. 

Thus |yk|≤|xk|≤ϵ for every k 
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Thus |yk|≤ϵ 

But then yϵz  

Hence z is Normal.  

Let x(n) be a sequence of points in α. 

Also let c-limx(n)=x  ……………………….(1.11) 

Now by Cooke,((1) theorem (10.2,I) (ii), 

The necessary and sufficient condition that x(n) in α should be αβ-coinvergent is that to every u in β, and to everyϵ>0, corresponds 

a number N(ϵ,n) such that forevery  p,𝓔≥N, ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

|∞
𝑘=1 ≤ϵ 

Thus given any u in z and ϵ>0, 

  We have,  ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

|∞
𝑘=1  ≤ϵ 

For   p,ϵ≥N(ϵ,u)    

Thus for every m, and for p,≥N 

   ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

|𝑚
𝑘=1 ≤ϵ   

If 𝓔 is fixed and p increased, it follows from c-convergence 

That  ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

|𝑚
𝑘=1 ≤ϵ,   ……………….(1.12) 

For 𝓔≥N and every m. 

Letting    m→∞,  we have for 𝓔≥N, 

      ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

|∞
𝑘=1 ≤ϵ,   …………………………(1.13)    

From (4.12) , we obtain  

     ∑ |𝑢𝑘𝑥𝑘|𝑚
𝑘=1 ≤ϵ+∑ |𝑢𝑘𝑥𝑘

(ℰ)
|𝑚

𝑘=1 , 

But since   x(𝓔) is in α and u is in z≤α*, we have  

[since by the definition of αβ-convergence α*⊇β] 

lim
𝑚→∞

∑ |𝑢𝑘𝑥𝑘|∞
𝑘=1   converges, so that x is in z* (as u is in z) 

Also by (1.13) 

∑ 𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

|∞
𝑘=1 ≤ ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘

(ℰ)
|∞

𝑘=1 ≤ϵ, For 𝓔≥N 

Therefore lim
ℰ→∞

∑ 𝑢𝑘𝑥𝑘
(ℰ)

= ∑ 𝑢𝑘
∞
𝑘=1

∞
𝑘=1 𝑥𝑘   

Thus αz-limit x(n)=x ……………..(1.14)  

Thus by [(1.11) and (1.14)] c-limit  x(n)= αβ-limit x(n) =x, 21thus α is regular under αz-convergence. 

This result is the first outcomes of this paper that the sequence space α is regular under αz-convergence. 

 

THEOREM (1.4,IV): A sequence space α is regular under ασ1-convergence. Where 𝜎1 is the space of all {xk} such that ∑ |xk|  

converges.  

PROOF:      Let xϵσ1 and |yk|≤|xk|  

Then ∑ |𝑥𝑘𝑢𝑘|𝑘  converges for  u ϵ 𝜎1
∗ = 𝜎∞   

That  ∑ |𝑥𝑘𝑢𝑘|𝑘   converges   

For uϵσ∞   

Hence   ∑ |𝑦𝑘𝑢𝑘|𝑘   will converge 

For   yϵ 𝜎∞
∗  as u is in σ∞   

But then yϵσ1    

Thus we get that 

If xϵσ1  and  |yk|≤|xk| then yϵσ1. 

Thus σ1 is normal. 

Thus our theorem can be restated as . the sequence space α is regular under ασ1-convergence where σ1 is normal. 

So we have that x(n) is  necessary and sufficient condition for ασ1-convergent and σ1 is normal thus by the necessary and sufficient 

condition for αβ-convergent  refer to section 1.2, given any u in σ1 and any ϵ>0 we have 

       ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

)| ≤ 𝜖𝑘   For  p,𝓔≥N, ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

)| ≤ 𝜖𝑚
𝑘=1 .   

Also αβ-convergent of x(n) implies c-convergent of xd(n) 

That is lim
𝑛→∞

𝑥𝑘
(𝑛)

  exists for every k. and in this case we write c-limx(n)=x. 

Thus if 𝓔 is fixed and p increased then it follows from c-convergences that  

                             ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

)| ≤ 𝜖𝑚
𝑘=1    ………………(1.15) 

      For 𝓔≥N and every m. 

Now let m→∞ then we have for 𝓔≥N, 

      ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

| ≤ 𝜖∞
𝑘=1   …………………………….(1.16) 

Now from (4.15), we get  

∑ |𝑢𝑘𝑥𝑘|𝑚
𝑘=1 ≤ 𝜖 + ∑ |𝑢𝑘𝑥𝑘

(ℰ)
|𝑚

𝑘=1       

          X(𝓔) is in α, and u is in σ1≤α*, we have  

   lim
𝑚→∞

∑ |𝑢𝑘𝑥𝑘
(ℰ)

| = ∑ |𝑢𝑘𝑥𝑘
(ℰ)

|∞
𝑘=1

𝑚
𝑘=1 ,   

Thus     ∑ |𝑢𝑘𝑥𝑘|∞
𝑘=1   converges, so that x is in 𝜎1

∗.   

Also by  (1.16), 

   | ∑ 𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

)| ≤  ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

| ≤ 𝜖∞
𝑘=1

∞
𝑘=1    

                             For 𝓔≥N. 

Thus    lim
ℰ→∞

∑ 𝑢𝑘𝑥𝑘
(ℰ)

= ∑ 𝑢𝑘𝑥𝑘
∞
𝑘=1

∞
𝑘=1  

    Hence   αβ-limx(n)=x   
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But c-lim of αβ-convergent sequence x(n)=x 

Hence c-lim of ασ1-convergent sequence x(n) =αβ-limx(n) =x 

Thus α is regular. 

 

THEOREM (1.4,V): The sequence space α is regular under αϒ*(s) convergence.Where ϒ(s):The space of all convergent 

sequences.   

PROOF :    Evidently  ϒ*(s) is normal in the light of the theorem (1.4,II) 

Let x(n) be a sequence of points in α. 

Also let x(n) in α be αϒ*(s)-convergent. 

But αβ-convergent of x(n) implies c-convergent of x(n) 

Also c-convergent x(n) implies the existence of  

                lim
𝑛→∞

𝑥𝑘
(𝑛)

  for every k. 

But then if this limit is xk, the points x, constructed with coordinates xk, is called the c-limit of x(n) and then we write  

             c-limit x(n) =x  ……………………..(1.17)   

we have to show that α is regular under  αϒ*(s)-convergence 

for which it is sufficient to show that  

c-limit of x(n)=αϒ*(s)-limit x(n)  

for this, since x(n) is αϒ*(s)-convergent and ϒ*(s) is normal. 

Hence in this case by a necessary and sufficient condition for αβ-convergence we have for an arbitrary ϵ>0 and u in ϒ*(s) 

    ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

| ≤ 𝜖∞
𝑘=1   ………………….(1.18) 

       For p,≥N(ϵ,u). 

Thus for every m and for p,≥N. 

        ∑ |𝑢𝑘(𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

| ≤ 𝜖𝑚
𝑘=1     

If 𝓔 is fixed and p increased then it follows from c-convergence  

That  ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

| ≤ 𝜖𝑚
𝑘=1      …………………(1.19) 

      For 𝓔≥N and every  m. 

Now assuming m→∞,  we have for 𝓔≥N.   

    ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

| ≤ 𝜖∞
𝑘=1   ………………………..(1.20) 

But from (1.19) 

    ∑ |𝑢𝑘𝑥𝑘| ≤ 𝜖𝑚
𝑘=1 +     ∑ |𝑢𝑘𝑥𝑘

(ℰ)
|𝑚

𝑘=1   

But x(𝓔)ϵα and uϵϒ*(s)≤α*  

That is x(𝓔) is in α and u is in α* (the dual space of α) 

Thus have that  

      lim
𝑚→∞

∑ |𝑢𝑘𝑥𝑘
(ℰ)

| =     ∑ |𝑢𝑘𝑥𝑘
(ℰ)∞

𝑘=1
𝑚
𝑘=1    

Hence      ∑ |𝑢𝑘𝑥𝑘|∞
𝑘=1  converges, so that x is in ϒ**(s)  …..(1.21) 

                                     And u is in ϒ*(s) 

Also from (1.20),  

       | ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

| ≤ ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

| ≤ 𝜖∞
𝑘=1

∞
𝑘=1       

                             For 𝓔≥N. 

Thus    lim
ℰ→∞

 ∑ 𝑢𝑘𝑥𝑘
(ℰ)

= ∑ 𝑢𝑘𝑥𝑘
∞
𝑘=1

∞
𝑘=1   ………………..(1.22) 

         For every u in  ϒ*(s) 

Thus due to the joint effort of  (1.21) (1.22)   

αϒ*(s)-limit of x(n)=x 

but by (1.17) 

   c-limit x(n)=x 

thus c-limit of αϒ*(s)-convergent sequence x(n)=αϒ*(s)-limitx(n)=x    

there for α is regular.    

 

THEOREM (1.4,VI): Sequence space σ∞ is regular under σ∞ σ∞
*-convergence. 

PROOF :    Let xϵ σ∞ and |yk|≤|xk| for every k. 

Then  ∑ |𝑥𝑘𝑢𝑘|𝑘  converges for uϵ σ∞
*  

Also  ∑ |𝑦𝑘𝑢𝑘|𝑘   will converges for yϵ σ∞
**   

But  by privious result, σ∞  is perfect    

Thus     σ∞
**= σ∞    

Hence  yϵ σ∞
**⇒yϵ σ∞ 

Therefore we find that  

If    xϵ σ∞  and |yk|≤|xk| for every k then yϵ σ∞   

thus σ∞   is normal. 

But by Theorem(1.3,II), σ∞
* is also normal. 

Now let   x(n) be a sequence of points in σ∞. 

Also let   x(n) in σ∞ be  σ∞ σ∞
*-convergent. 

That is x(n) in σ∞ is σ∞-convergent. 

Also αβ-convergent of x(n) implies c-convergent of x(n)  

Thus  x(n) is c-convergent  

Then,   lim
𝑛→∞

𝑥𝑘
(𝑛)

   exists for every k.   
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Then by definition if this limit is xk   is the c-limit of x(n) and then  

    c-limit x(n)=x  ……………………..(1.23)   

we have to show that σ∞ is regular under σ∞-convergent. 

Which is possivle only when  

c-limit of x(n)= σ∞-limit of x(n)=x 

thus we have the situation that  

x(n) is σ∞-convergent and σ∞
* is normal. 

Thus by necessary and sufficient condition for αβ-convergence we can have for any ϵ>0 and u in σ∞
*, 

     ∑ |𝑢𝑘 (𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

)|∞
𝑘=1 ≤ 𝜖  ……………………….(1.24)   

               For p,≥N(ϵ,u). 

Thus for every m, and for  p,𝓔≥N 

   ∑ |𝑢𝑘 (𝑥𝑘
(𝑝)

− 𝑥𝑘
(ℰ)

)|𝑚
𝑘=1 ≤ 𝜖     

It 𝓔 is fixed and p increased then it follows from c-convergence that  

                   ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

)|𝑚
𝑘=1 ≤ 𝜖    ………………….(1.25 ) 

             For 𝓔≥N and every m. 

Now letting m→∞, we have for 𝓔≥N, 

∑ |𝑢𝑘(𝑢𝑘 − 𝑥𝑘
(ℰ)

)|∞
𝑘=1 ≤ 𝜖  …………………………(1.26) 

But from (4.25), 

∑ |𝑢𝑘𝑥𝑘|𝑚
𝑘=1 ≤ 𝜖 + ∑ |𝑢𝑘(𝑥𝑘

(ℰ)
)|𝑚

𝑘=1        

But  x(𝓔)ϵσ∞ and uϵσ∞
*   

Thus we have,  

     lim
𝑚→∞

∑ |𝑢𝑘𝑥𝑘
(ℰ)

| = ∑ |𝑢𝑘𝑥𝑘
(ℰ)

|∞
𝑘=1   𝑚

𝑘=1  

But    ∑ |𝑢𝑘𝑥𝑘|∞
𝑘=1  will converse   ………………….(1.27) 

    For x is in σ∞
**=σ∞ and u is in σ∞

*  

Also from (1.26) 

|∑ 𝑢𝑘(𝑥𝑘 − 𝑥𝑘
(ℰ)

)|∞
𝑘=1 ≤ ∑ |𝑢𝑘(𝑥𝑘 − 𝑥𝑘

(ℰ)
)|∞

𝑘=1 ≤ 𝜖    

                                            For 𝓔≥N 

That is     lim
ℰ→∞

∑ 𝑢𝑘𝑥𝑘
(ℰ)

= ∑ 𝑢𝑘𝑥𝑘
∞
𝑘=1

∞
𝑘=1     …………………(1.28) 

       For every u in σ∞
*   

Hence by (1.27) and (1.28)   

σ∞σ∞
*-limit of x(n)=x    

but by (1.23) 

x is the c-limx(n) 

hence c-limit x(n)=σ∞σ∞
*-limit of x(n)=x.   

hence σ∞ is regular. 

 

 

In addition to the results establishes above we can construct a few more sequence spaces in order to investigate . 

              Whether they are regular. But we give here a stoppage to the study of regular sequence spaces leaving the scope for 

others to study it further by establishing some other results.    
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